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Abstract

Acoustic receptivity of a Blasius bom,(lary layer ill tile presence of distributed surface irregular-

ities is iuvestigated analytically. It is shown that, out of the e_tire spatial spectrum of the surface

irregularities, oHly a small band of Fourier compollellts can lead to an efficient couversioll of the

acoustic input at any given frequency to an unstable eigenmode of the boundary layer flow. The
location, and width, of this most receptive baHd of wavcmmlbers corresponds to a relative detuning

of O(R'_/_) with respect to the lower-neutral instability wavenumber at the frequency under con-

sidcration, Rt.b. being the Reynolds number based on a typical boul_dary-layer thickness al. the lower

branch of the neutral stability curve. Surface imperfections in the form of discrete mode waviness
3/8

in this range of wavenumbers lead to initial instability amplitudes which are O(Rt.b. ) larger tha,l
those caused by a single, isolated roughness element. Iu contrast, irregularities with a continuous

spatial spectrum produce much smaller instability amplitudes, even compared to the isolaled case,

since the increase due to the resonant nature of the response is more than compensated for by the

asymptotically small band-width of the receptivity process. Analytical expressions for the maximum

possible instability amplitudes, as well as their expectation for an ensemble of statistically irregular
surfaces with random phase distributions, are also presented.



1 Introduction

Tile purpose behind this paper is to present some theoretic_d results concerning the acoustic receptivity

of a boundary layer flow due to distributed surface imperfections, which can be either deterministic

or ran(lore in terms of their origin. Such imperfections may arise due to a variety of causes, rallging

from manufacturing defects or structural joints to operational factors, such as paint erosion, insect

debris and ice accretion, etc. ill. Of the many ways they have been known to affect the transition to

turbulence, inducement of receptivity is a major one when the maximum height of these irregularities

is small.

The generation of Tolhnien-Schlichting (henceforth 'F-S) instabilities in low-speed boundary layers

via the interaction of fi'ee-stream sound with a local surface distortion was first explained by Goldstein

[2] and Ruban [3] in 1985. They showed that receptivity in this case can be attributed to the fact

that the unsteady scattered field produced by this interaction inherits its temporal scale from the

free-stream disturbance but its spatial scales fi'om the shorter surface irregularity, thereby acquiring a

Fourier spectrum that overlaps with the T-S wave. Following this fundamental I)reakthrough, a variety

of other localized receptivity problems were studied by other investigators, and examples of these can

be fouud in the proceedings [,1] and [5].

Receptivity due to distributed waviness of the surface was studied by Crouch [6] [7]; however, the

conclusions of these two references concerning the magnitude of receptivity are contradictory to each

other. Furthermore, the prediction technique used therein appears to be more suitable for distributions

of surface nonuniformities which are homogeneous in the flow direction and only involve a finite number

of (discrete) Fourier modes. On the other haud, Choudhari and Streett [8] had shown how generation

of instabilities via distributed regions of surface inhomogeneities could, in general, be predicted by a

relatively simple extension of the localized receptivity results. This extension is based on treating the

receptivity in _ region of large streamwise exteut as a sum of the contributions from its constituent sub-

domains of infinitesimal size, in each of which localized receptivity analysis becomes applicable. The

same idea was used originally by Tam [9] in an attempt to predict the direct excitation of instability

waves iu the absence of any non-uniformities on the surface. The advantages of this technique iuclude

its applicability to arbitrary distributiolJs of surface inhomogeneities, and its siuaplMty in leading to a

first order ordinary differential equation for the amplitude of the instability wave at any given frequency.

The latter, as demonstrated in this paper, facilitates a further analytical treatment of the distributed
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receptivityproblem,therebyyieldingclosed form expressions for ttle generated instability ,notion and

also l)roviding a clearer interpretation of the l)hysics involved.

The receptivity to a single frequency acoustic disturbance in the presence of surface iml)erfections

of know. shape and distribution is considered first in Section 2.2 below, following a brief discussion of

tile general procedure for solving receptivity problems involving weak surface inhomogeneities; a more

detailed discussion of the background analysis can be found il| Refs. [8] and [10]. Although the classical

Orr-Sommerfeld framework has been utilized as the basis throughout, a similar treatment could also

have been applied to the problem using a purely asyml)totic theory. The results obtai,ed in Section

2.2 for the deterministic problem are used as the building block in Section 2.3 for analyzing receptivity

due to a ralldoln roughness distribution with a specified power spectra.I density. Numerical verification

of the theoretical results is also considered.

2 Receptivity Analysis for Distributed Surface Inhomogeneities

2.1 Background and Problem Formulation

Consider tim two-dlmensional flow over a slightly rough surface that is nomiually flat aad aligned with

an incompressible free-stream with mean speed U_o, t)h's time-harmonic fluctuations having fl'equency

w*, and amplitude u*_, such that efs = U_,c/U _ << l (Fig. l). The m.'_odmum perturbation in the

surface height h_(x*) with respect to the mean position y* = 0 is also assumed to be sufficiently small

compared to the mean boundary-layer thickness (ew = (h_,/_5*),,_,_x. << 1) so that the [low everywhere

can be expanded as a regular perturbation series in terms of the amplitude parameters etu and efs. As

described below, each term in this perturbation series turns out to involve a different combination of

spatial and temporM scales, and the objective from the standpoint of receptivity is then to determine

the first term which contains the desired combination of scales, i.e., one that overlaps with the local

instability wave. Of course, in order to determine this term with a given order of accuracy in terms of

Reynohls number effects, one needs to know all the previous terms also to the same order of accuracy.

It should be obvious that the zeroth order term corr(,sponds to the Blasius streamfuuctiou for

the mean boundary-layer flow over a fiat, surface, while the O(ef_) perturbation, corresponding to

the unsteady signature of the acoustic free-stream fluctuation withi, this boundary layer, is given by

the generalized Stokes-wave solution obtained in [11]. The O(_w) l)erturbation, corresponding to the

steady but short-scale disturbance due to variations in the surface geometry, satisfies the l)arallel flow



equationsup to O(R -3/4 log R) on a local basis, although the large-scale modulation due to the weak

growth of the Blasius boundary layer also comes into play, depending on the streamwise extent of the

region of imperfections. Note that R denotes tile Reynolds number based on the boundary-layer scale

and is defined as R = v/-R-b'77_.,Re:_. being tile Reynolds number based on the distance from the leading

edge.

The first term in the amplitude exl)ansion which possesses bolh unsteadiness and short spatial scales,

and hence is the object of the receptivity calculation, corresponds to the O(¢wci_) term arising from

a quadratic coupling between the unsteady free-stream :_nd steady surface disturbances. Physically,

it represents the unsteady field produced by the iuteraction of the O(el_ ) Stokes shear wave with the

O(e_,) mean flow perturbation, and by its direct scattering due to the O(e,o) perturbation in the surface

height. Within the "geometrical optics" approximation, this scattered field is governed by the unsteady

linear disturba.nce equations for a locally parallel mean flow, alol,g with inhomogeneous terms in tlLe

differential equations themselves and in the boundary conditions as well, in view of the two different

mechannisms for scattering as mentioned above. Again, non-parallel effects will need to be considered

if propagation distances become comparable to the body-length scale. Ilowever, subsequent analysis

will show that most of the receptivity is actually concentrated in a region of much smaller streamwise

dimension and hence, a prediction based on the parallel flow equations is sufficient, at least to the

leading order of approximation in terms of the Reynolds number.

Both the mean flow perturbation and the unsteady scattered fiehl, thus, satisfy the quasi-parallel

disturbance equations, and therefore can be solved on a local basis by reducing these l)artial differential

equations to ordinary ones through the use of a Fourier transform in the streamwise direction. The

equations in the transform space can be solved either in closed form, via a systematic but multi-

layer expansion in terms of the Reynolds number [2-5], or numerically by using the Orr-Sommerfeld

equation as a non-asymptotic but composite approximation [,1-8]. In either case, the locally generated

instability wave can be isolated as the residue co,ltributi(m corresponding to a pole singularity of the

=

inverse Fourier integral for the unsteady scattered field. This residue cout,ibution is linear in terms of

the local perturbation to tlLe mean surface-helght, with a coefficient function, A_, that characterizes

the eftqciency of the local receptivity process. The T-S lluctuations produced locally, i.e., in each

infinitesimal subregion, propagate independently of tile instability motion generated elsewhere, with

their amplitude and t)hase variation being determined by the T-S waveuumber as a function of R. The D
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total instability anaplitude at any location is then given by the integral over tile contributions from all

sources upstream of this location [Sa°]

= _ff_2 Eu(Y; R) ei[OT.V( fl)--wt]

u_c v Tr

R

where U,*rsdenotes the streamwise velocity fluctuatlon associaled with tile T-S motion, E, is the T-S

eigenfunction for this quantity, normalized to have a maximum magnitude of unity across the boundary

layer, and @:/'s is the spatial phase of the 'I'-S wave

9rs(l ) = 2 , .rs(10 . (2.1b)

The quantity h_(x*) is the local perturbation in the surface height, nondimensionalized by the slowly

varying length scale z*Re-_, ff_, and Au is the eIFMency function obtained from localized receptivity

analysis. One should note that the streamwise variations of the dgenfunction Eu, wavenumber ors,

and efficiency factor Au are much slower than those of the instability phase Ors and the surface-lmight

function hw; thus we have << I en ,, etc. In Fig. 2, we have shown the Reynolds number

dependence of the magnitude of M, for selected values of the nondimensional frequency parameter

f0 = 106 x oa*u*/U_.

By differentiating with respect to R and invoking the quasi-parallel approxhnatioll, Eq. (2.1a) can

also be converted to a wave amplitude equation similar to that obtained by Tam [9],

d u_-s
- i ,lOTs u_.9 + _f A h_, (2.2)dR _ " _ '

where, for simplicity, we have omitted the Y-del)ende,ce of the disturbance motion, and fi'om now

on, u_,s will denote simply the maximum of the streamwiso velocity t)erturbation at each streamwise

location. The homogeneous solution to this amplitude equation corresponds to the T-S wave, which is

excited every time the local spectrum of the geometry function hw overlaps with the T-S wavenumber.

As seen from gq. (2.2), when the receptivity occurs continuously over a large mmlber of instability

wavelengths, the change in the wave aml)litude at any station is a combined outcome of the local

amplification of the instability waves generated upstream of the present location and the external input

due to local receptivity. As discussed in Refs. [9] and [10], the external input don,inates the initial

development of the instability amplitude; however, after u_,s becomes sufficiently large in magnitude,

the amplitude evolution curve asymptotes to tl,at of a pure T-S wave eigensolution. Note also that,

as a result of the distribute(l receptivity process, the location of stationary (i.e., nlaximum) amplitude



doesnotcorrespondto thetheoreticalupper-branchlocatiouRu.b.. IIowever, the shift is asymptotically

small, and one may, therefore, measure the generated instability motion in lerms of its amplitude at the

upper-brauch location itself. The intrinsic receptivity can be gauged by dividing tile noJtdimensional

amplitude u_.s(R = R,,.b.)/U_c by the aml)lification ratio between the two neutral locations, which

leads to an "effective coupling coefficient", C, indicating the effective instability amplitude at the

beginning of the linear amplification stage. A cout)ling coefficient [9] basically relates the output of the

receptivity process, i.e., the amplitu(le of the generated instability wave, to its input, i.e., the free-

stream disturbance amplitude, and the measure C is the local coupling coefficient for an equivalent,

but fictitious, localized mechanism that has all its receptivity lumped together at the lower-branch

station R = Rrb.. Approximate analytical expressions for the effective coupling coefficient for different

types of geometries are derived in Sections 2.2 and 2.3 below.

2.2 Receptivity due to a single-mode surface waviness

Since any spatially homogeneous distribution of roughness (,]ements can be examined iu terlns of its

individual Fourier components, we first consider geometries of the form

fwhere (2.31
R ' cb. R x* '

corresponding to a surface with single-mode waviness of constant nondimensional amplitude Rh0. Note

that Rh0 is the Reynolds number based on the free-stream speed U_o and the dimensional amplitude

of the surface-height perturbation h_). Similarly, R,\_ is the Reynolds number based on the constant

dimensional wavelength )%(- 2r/a_,) of the surface undulations, while a_ denotes the dimensionless

wavenumber based on the slowly-varying, local length scale, x* Re-_. /2. The integral solution (2.1a)

nOW becolneS

R

It_'--S = _ nho CiOTS(R)TiC°-iwt / iu(Rs)ci[O_"(ns)-OT"s(R')]tlRs" (2.,1)

Since the efficiency function Au wries slowly with the integration variable R_, the integrand in (2.,1)

is nearly oscillatory if the wavenumber of the surface undulations a_ differs from the local instability

wavemlmber c_'s by an 0(1) magnitude, rI'hen contributions from the neighbouring surface locations

correspon(ling to the out-of-phase elements during each cycle of oscilla,tion nearly cancel each other, and

the integral becomes end-point dominated. This implies that the disturbance aml)litudes will retain

the the same order of magnitude throughout the region of waviness.

=_
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2.2.1 Waviness synchronized with the neutral instability motion

A sustained generation of instabilities will occur only if a_ ._ aTS, corresponding to a nearly syn-

chronous variation of tile forcing phase Ow and the eigenmode phase O_'s, which leads to a mutual

reinforcement of the contributions to the integral in (2.4) front adjacent surface locations. Of course,

since tile instability wavenumber varies slowly with distance along the surface, such a resonance is

necessarily localized in space, and the extent of this localizatiou determines how large the distributed

receptivity is, when compared to the receptivity induced by a single, isolated roughness element. Since

the instability wavenumber is complex, in general, the condition of perfect local resonance requires that

= a 's(Ri.b.) or = (2.5a, b)

where the asterisk denotes dimensional quantities, and subscripts l.b. and u.b. represent lower and upper

branches of the neutral stability curve, respectively. Whell (2.5a) or (2.5b) is satisfied, the exponent

in the integrand of (2.4) has a saddle poiut at the respective neutral location, with the real R axis

corresponding to a path of descent in case of (2.5a), and a path of ascent when (2.51)) is true. The

latter case is, of course, of little practical interest, and will not be discussed here.

The presence of a saddle point at R = Rl.b. implies that the importance of the local contribution to

the effective coupling coefficient diminishes rapidly with distance away from the lower branch location.

Applying the steepest descent method yields the following al)proximation for the effective coupling

coefficient
[

-----
!c,.,. Rho 2 A,(nt.b.)d*° , = - (2.6)

Rl.b.

where the suffix p.s. indicates that the condition (2.5a) for perfect synchronization is satisfied, and

the primes denote derivatives with respect to R, evaluated at the neutral location R = Rrb.. The

dc)_s I
dispersion factor Du, which is simply Rex.x*2_x.l_:.=_:;b. ill dimensional terms, controls the rate at

which the phase of the natural resl)onse becomes uncorrelated with the surface geometry as one moves

away from tile resonance location. Asymptotically, the maguitude of this factor is of O(R_./4), and

s/s
therefore the length of the resonance region corresponds to AR = O(Rrb .), or ill physical terms,

Ax* = O(X_.b.R_._./a), which is of the same order as tile geometric mean of tile distance from the

leading edge and the instability wavelength at the lower branch location. This shows that that the

synchronized surface waviness will lead to instability amplitudes which are larger than those produced

.3/s
by all isolated surface protuberance by a factor of O(Rrb ' ). This simple analytical result confirms,

i



as well as explains, the more recent computations of Crouch (Ref. 7) where he found tile distributed

receptivity to be "two orders of magnitude" larger than that due to an isolated roughness element, as

against his earlier findings (Ref. 6) that tile receptivity is comparable in both cases. Finally, since

ill practice, the imaginary part of Do is larger than its real part at all frequencies of interest, the

dispersion effect which leads to the detuning of the forcing O,o(R) with respect to OTs(R) is caused

more by the variation in the instability growth-rate, than by a variation in the instabilily phase-speed

near R = Rl.b..

It is equally instructive to consider the single mode waviness problem using Tam's wave amplitude

equation (2.2), which is physically analogous to the second order equation obtained for a forced oscillator

with slowly-varying parameters, except that the oscillator motion usually involves a zero or positive

dami)ing. Both linear and nonlinear problems of this type have received, and continue to receive,

ample attention from applied mathematicians over the years as evidenced from the various citations in

a recent review by Kevorkian [12], which appear to have begun with Ref. [13] in 1971. lience, only a

brief sketch of tile solution to (2.2) is given here. A reader interested only in receptivity may also find

some supplemental discussion, especially related to the alq_ropriate initial condition for (2.2), as well

as the numerical results for the case of wall-suction induced receptivity, in Ref. [10].

Basically, the total disturbance amplitude consists of a superposition of the particular solution,

1 Rl,0 A_(Rrb.) elO,_(n)
= R .b. "Ts(RI.b.)

(2.7a)

and a constant multiple of the hon|ogeneous solution,

,,7,= (2.7b)

If O_w/OeTS -- 1 ---- O(1) everywhere, then tlle two solutions (2.7a) and (2.7b) remain decoupled, i.e.,

linearly independent, everywhere, and imposing an initial condition corresponding to zero initial in-

stability amplitude forces the coefficient of the homogeneous solution to be zero identically. On tile

other hand, when the resonance condition (2.5a) is satisfied, the particular solution becomes singular

=

at R = Rrb., reflecting the fact that the particular and homogeneous solutions are linearly dependent

in tim vicinity of this location, and, therefore, the decomposition of the total solution into (2.7a) and

(2.7b) is invalid.

A separate, inner expansion becomes necessary for(R-I?l.b.)/Rt.b. = O(R-[.:/s), wherein I)oth o_(R)

and CrTs(R) can be al)proximated by their respective linear Taylor-series approximations centered on

8



theresonancelocation,R = Ri.b.. Expressing the coupling coeffLcient U_.s/U_c in tile inner region as tile

product of a rapidly-varying component e2i'_t.b.(n-RJ.b.), which incorporates the phase synchronization

with the local instability motion, with an amplitude function A(R) that varies oil the inner length-scale,

we obtain the amplitude evolution equation

.¢/-f Rho ' h,(Itrb.) e i¢°+i°_'(n-n_b)2, (2.8)dA 2ia_Ts(R - Rtb )A + _ _w
= ..

where, for brevity, we have avoided introducing a specific coordinate just for the inner region. The

solution to (2.8),

A(R) = Al.b.e ic''rs(12-nl'b')2 + Rt.b. rb.

matches the particular solution (2.7a) sufficiently far upstream, provided

Rho Au( Rrb.)ei¢O" (2.10)
Arb.- ltrb.

As R - Rrb. _ oo on the inner scale, Eq. (2.10) yields

U_.s/U*_c _ 2Arb. e2i_rs(n''b)(n-n_b)+i_'Ts(n-n_b )2

_ Rho A,,(Rrb.) ei¢O+2ie,rs(nt_,.)(n_Rr_,)+io,_(n_nr_,) 2 ' (2.11)
Rrb. iv/_ Do, (R - Rt.b.)

implying that the disturbance motion downstream of the inner region is dominated by the homogeneous

(i.e., the instability wave) solution, which is larger in amplitude than the particular solution (2.7a) by

3/s
a factor of at least (R - Rrb.) _ = O(Rrb ' ); see Fig. 3. The effective coupling coelficient in the

perfectly synchronous case is then given by

Rho t 2Cp.,.(R) = 2Arb.- Rrb. _ A,,(Rrb.) e i¢°, (2.12)

which is identical to the steepest-descent result (2.6). Tile reader may note that, since the coupling

coefficient was determined entirely by the solution in the shorter inner region, nonparallel effects asso-

ciated with the streamwise derivatives of the base flow, and the vertical velocity associated with the

same, can be neglected to the leading order, at least.

2.2.2 Near resonant geometries: the effect of detuning

Other types of near-resonant geometries, corresponding to arbitrary modulation of the waviness am-

plitude on tile length scale of the resonance region, can also be haudled in a manner similar to that

9



ill Section2.2.1above.Thus,for geometriesof the formhw

varying on the inner scale, one obtains

• , 2 v_l?,,,_..._LAu(l, Lb.)ci_,_.s(,__,b.,,)2fl_,I(R) = AZ.b.C"'7.s(n-lh.b.) + Rt.b. ¢_b.

For the case of spatially periodic geometries with a wavenumber detuning of eta:1

O_TS(Rt.b.), i.e.,

Aw(R) = e2i'_(n-u_ b)+;¢0,

this leads to

= c,.,.,

= A_(R)e2iC_rs(n_.b.)(n-R_,,,.), with A_,(R)

A,,(R_) e i'-'_'sU¢'-I¢'" ?dl?,. (2.13)

with respect to

(2.14a)

(2.14b)

indicating that tile effective coupling coefficient due to an individual Fourier component drops off in

a gaussiau manner away from the resonant wavenumber Ot.b.. By observing that only the real part of

iD_ contributes to the magnitude of the exponential factor, it is clear that this drop-off is purely due

to the streamwise variation in the instability growth rate near R = Rt.b.. Basically, if one views the

phase-synchronization process in terms of the real parts of the respective wavenumbers (_, and ars),

then, for the detuned cases, the center of the resonance region is somewhat upstream or downstream

of the lower branch location, which implies a reduced amplification ratio between tile resonance region

and the upper branch, and in turn, a reduced magnitude of the effective coupling coefficient. Only

a detuning of up to a,,t = O(v/'D-_), corresponding to a,o,/OTs(Rl.b.) = O(R-[.:/s), can produce any

significant receptivity, due to the scaling of AR/RI.b. = O(R-[._. Is) for the resonance region.

Figure 4 shows the magnitude of the normalized effective coupling coefficient, C(a_._ )/R/, o, plotted

as a function of the wavenumber detuning paranleter (_/rtTS(RI.b.) expressed as a percentage, for two

w v /Uoo. The freqnency of f = 25 x l0 -G has a loga-different values of the frequency parameter f = • • ,2

rithmic amplification factor of about 9, and, hence, lies in the most critical range of fiequenc}es for the

transition process. On the other hand, the fi'equency of f = 55 x 10 -6, although not very important for

transition, may be relevant to laboratory experiments. The figure shows that the analytical predictions

at both frequencies are in very good agreement with the results obtained from a numerical solution of

the wave amplitude equation (2.2). Tile only significant difference between the two results appears to

be that, at large positive values of the detuning parameter (> 8%), the numerical coui_ling coefficient

decreases more slowly titan the gaussian drop-off predicted in the analytical solution (2.l.lb).

l0



2.3 Geolnetries with a continuous spectrum of a deterministic or random nature

Now,considertile classof surface imperfections which have a continuous spatial spectrum, and, there-

fore, cannot be classified as discrete-mode waviness. Assunfing the spectrum to be homogeneous in the

streamwise direction, one can integrate over all contributions of the folm (2.1,ib) in order to arrive at

the total coupling coefficient for any particular geometry. In addition to its dependence on the power

spectral density R_0 (awl) of the surface-irregularity distribution, the coupling coefficient also depends

upon the relative phase distribution, ¢0(aw,), between the dilferent wavenumber components of the

surface undulations. IIowever, an obvious conclusion that holds for all geometries with a continuous

spatial spectrum is that the integrated coupling coefficient is O(R_._. Is) times smaller than the discrete

mode solutions (2.12) and (2.14a), since the bandwidth in the at_ space which can contribute signifi-

cantly to this integral is only of O(R[:/s). This makes the overall receptivity even smaller than that

induced by an isolated roughness element with a comparable perturbation in height. Note that the

receptivity is stronger for the discrete mode waviness of the form (2.3), because the latter represents

a peak in the spatial spectrum of the surface irregularity near the resonant wavenumber, and, thus,

posseses more energy in the relevant band of wavenunlbers.

Lacking a precise knowledge about the surface irregularities, it is not an easy matter to characterize

the phase distribution of the spectral representation of any stationary process. Only a few limited results

exist for finite-dimensional distributions [14]; these prove that the phase ¢o at any wavenumber is always

uuiformly distributed on [-Tr, _] and that the joint distributions of the phase variables are independent

of the spectral amplitudes. Assuming that this result also holds ill the limiting case of a conthluous

spectrum, and that the corresponding power spectral density R_,0 does not vary significantly over the

narrow bandwidth of the spectrum, one finds that the expected value < C 2 >1/2 for an ensemble of

rough surfaces which are statistically similar is given by

< C2 >1/2 = vr_____lsi,, (,rg(D_,)) a_(/_,.b.)l, (2.15)
ltJI.b.

where arg denotes the argument of a complex valued quantity. In any given realization, the effective

coupling coefficient will vary from a minimum value of zero to a maximum of 2 3/'t times the average

value in (2.15). This upper limit is associated with that particular realization for which contributions

from all wavemlmbers are in phase, and, therefore, the respective mag,itudes can be added to each

other in a linear fashion.

11



3 Concluding Remarks

The theory presented in this paper elucidates the nature of the distributed receptivity process, and

provides a closed form approximation for the instabifity-wave amplitude as a function of the amplitude

and frequency of the free-stream disturbance. Although analyzed in the specific context of receptivity

due to distributed surface irregularities, the results obtained can be easily generalized to receptivity

due to other forms of surface disturbances, such as wall suction, wall admittance/compliance, and wall

temperature, etc. An especially important application would be to predict the generation of stationary

cross-flow vortices due to distributed surface roughness/suction by generalizing the localized receptivity

results obtained earlier [15].

The theory also demonstrates the increased effectiveness of near-resonant forcing, which leads to

continual receptivity over long distances. At low speeds, such resonant forcing can only be produced

via the interaction of the free-stream disturbances with surface inhomogeneities of different types, such

as surface roughness, short-scale variations in suctions, etc. However, in supersonic flows, phase speeds

of the free-stream and boundary-layer disturbances are of the same order, and a near-resonant forcing

could possibly arise directly, without any need for "tuning" via scattering at the boundary surfaces. If

such an unsteady forcing does indeed occur, the ideas presented above might turn out to be applicable

in predicting the boundary-layer response in these problems as well. Our current effort is focussed

along this direction.
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